Field patterns of leaf plasticity in adults of the long-lived evergreen Quercus coccifera.

نویسندگان

  • Rafael Rubio De Casas
  • Pablo Vargas
  • Esther Pérez-Corona
  • Esteban Manrique
  • José Ramón Quintana
  • Carlos García-Verdugo
  • Luis Balaguer
چکیده

BACKGROUND AND AIMS Quercus coccifera, as a long-lived sprouter, responds plastically to environmental variation. In this study, the role of foliar plasticity as a mechanism of habitat selection and modification within the canopy and across contrasted habitats was characterized. An examination was made of the differential contribution of inner and outer canopy layers to the crown plasticity expressed in the field by adult individuals and its dependence on environmental and genetic factors. METHODS Within-crown variation in eight foliar traits was examined in nine populations dominated by Q. coccifera. The difference between mean trait values at the inner and outer canopy layers was used as a proxy for crown plasticity to light. Correlations between geographic distances, environmental differences (climatic and edaphic) and phenotypic divergence (means and plasticities) were assessed by partial Mantel tests. A subset of field measurements was compared with data from a previous common garden experiment. KEY RESULTS Phenotypic adjustment of sun leaves contributed significantly to the field variation in crown plasticity. Plasticity in leaf angle, lobation, xanthophyll cycle pigments and beta-carotene content was expressed in sun and shade leaves concurrently and in opposite directions. Phenotypic plasticity was more strongly correlated with environmental variation than mean trait values. Populations of taller plants with larger, thinner (higher specific leaf area) and less spiny leaves exhibited greater plasticity. In these populations, the midday light environment was more uniform at the inner than at the outer canopy layers. Field and common garden data ranked populations in the same order of plasticity. CONCLUSIONS The expression of leaf plasticity resulted in a phenotypic differentiation that suggests a mechanism of habitat selection through division of labour across canopy layers. Signs of plasticity-mediated habitat modification were found only in the most plastic populations. Intracanopy plasticity was sensitive to environmental variation but also exhibited a strong genetic component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using I...

متن کامل

Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes.

We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown o...

متن کامل

Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in Quercus coccifera L. under Mediterranean conditions.

The accumulation of epicuticular waxes over stomata in Quercus coccifera L. contributes to a severe reduction in maximum stomatal conductance (g s,max) under Mediterranean (MED) conditions. However, this phenomenon was not observed in this species under temperate (TEM) conditions, which could lead to differences in the ability to assimilate CO2 between the sites. We hypothesise that the overall...

متن کامل

Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity?

Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long-term throughfall exclusion. Gas exchan...

متن کامل

Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual

Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2007